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SUMMARY

During this report period refinement of calculations of GaAs solar

cell output parameters and development of a computer model for parameter

optimization was completed. The results were analyzed to determine the

material characteristics required for a high efficiency solar cell. Calculated

efficiencies for a P/N cell polarity are higher than an N/P cell. Both cell

polarities show efficiency to have a larger dependence on short-circuit current

than an open-circuit voltage under nearly all conditions considered. The toler-

ances and requirements of a cell fabrication process are more critical for an

N/P type than for a P/N type cell. A cell efficiency of 20% should be possible

in GaAs. Several solar cell fabrication considerations relative to junction

formation using ion implantation are also discussed.
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SECTION 1

INTRODUCTION

In the past GaAs solar cells have received considerable attention as

an attractive alternative to Si cells for achieving higher efficiencies, higher

temperature operation and increased resistance to radiation in the outer space

environment. These predicted improvements were based on the bulk material

characteristics of GaAs. Nearly all of the solar cell development effort

occurred during the early stages of material and device process development

with the result that the performance of the best cells reached 13% efficiency.(l' 2)

About the time work on GaAs solar cell development was de-emphasized, in-

creased attention to other GaAs devices began to develop, the collective results

of which have contributed to significant improvements in both materials tech-

nology and p-n junction formation processes.(3)

Recent experimental and theoretical work on GaAs photodiodes and

solar cells, respectively, indicate that high efficiency solar cells (greater than

20%) in GaAs are possible with present material and process technology. De-

tailed review of this work and additional calculations and considerations taking

into account practical process limitations confirm this conclusion and form the

basis for the present program.

The program has been divided into three phases with each phase

designed to provide results which are complete, and will provide the necessary

input to conduct the succeeding phase. The three phases are as follows:

(a) Phase I - Analytical

* Refinement of calculations of GaAs solar cell

output parameters.

* Development of computer model for parameter

optimization.
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(b) Phase I - Experimental

* Determination of optimum implantation param-

eters.

* Determination of optimum contact metallurgy,

antireflective coating and surface treatment.

(c) Phase II - Fabrication

* Fabrication and characterization of first lot of

development solar cells.

(d) Phase III - Fabrication

* Refinement of implantation parameters for

maximum solar cell efficiency.

* Refinement of processing steps for maximum

efficiency.

* Fabrication and characterization of a second

lot of developmental solar cells.

* Radiation hardness study.

Phase I (analytical) will produce the values required to specify the

material characteristics desired for both cell type polarities. These specifica-

tions will be used as a guide in conducting the experimental part of Phase I.

The results of Phase I (experimental) will produce data on the optimum process

parameters to be incorporated into fabricating the first lot of developmental

solar cells. Upon characterization of these cells refinements will be made to

the initial process procedures based on the results obtained. A second lot of

developmental cells will then be fabricated and characterized as part of Phase III.

A radiation hardness study of these cells will conclude the work in Phase III.

This report covers the results of Phase I - analytical. The formula-

tions to determine solar cell output have been incorporated into a computer

model for cell optimization study. The results have been analyzed with the

following principal conclusions:

* Cell output is higher for the P/N polarity than for the

N/P polarity.
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* Both cell polarities show efficiency to have a larger

dependence on short-circuit current than on open-circuit

voltage under nearly all conditions considered.

* The tolerances and requirements of a cell fabrication

process are more critical for an N/P type than for a

P/N type cell.

* A cell efficiency of 20% should be possible in GaAs.

These conclusions and others are discussed in more detail in this
report. A brief discussion of the various considerations concerning the fabrica-
tion of ion implanted junctions is also given. Here several factors such as

range-energy, dopant profiles, annealing, etc., affecting the doping of GaAs by

this technique are discussed. Results of experimental investigation of the

optimum implantation and other solar cell process parameters will be discussed
in the next report.
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SECTION 2

COMPUTER MODEL

The computer model developed for optimization of the important

parameters affecting GaAs solar cell output performance consists essentially

of the formulations of Moss.(2' 4) The relations derived in the references which

describe solar cell behavior are as follows:

JT = JSC
- Jo (eqV/nkT 1) - J

0 -1-rec

X2

JSC 
=

J'O o

IKL

Jo (K2 L2 _ 1)

(a+ KL) -- Kt et/L - et/L) + a (et/L + e-t/L)}

I (et/L + e-t/L)+ a(et/L - e-t/L)

e-Kt (KL
(1 +

+ A/L)
Ke) I

w(VD ~sinh 2kT(
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jo = qni

kT
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In Jo/jo

(L q )

JL = _

(r )

JO/jo = (r + 1) er

VL JL

in

where: JT = total current

J = short circuit current density

Jo = reverse saturation current density

I = incident photon flux

t = junction depth

K = absorption coefficient

L = minority carrier diffusion length

V = open circuit current voltageoc

r = minority carrier lifetime

VL = operating voltageL
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= built in junction voltage

JL = operating current density

s = surface recombination velocity

NA, ND = majority carrier concentrations

W = depletion layer width

From these equations it is clear that Jo and jo are the important

quantities to consider in optimizing cell performance. The material charac-

teristics which affect these two quantities are minority carrier diffusion length

and lifetime, majority carrier concentration, and surface recombination velocity.

Cell fabrication considerations affecting output include junction depth, junction

recombination current and surface recombination velocity. In the present

model we assume junction recombination to be small and have assigned as value

of 105 cm sec
-

1 to the surface recombination velocity while varying junction

depth. Thus the material characteristics can be optimized and a cell structure

determined for experimental study of the cell fabrication process. The validity

of these assumptions will be determined by the results of the experimental work

and the ability of the process to produce the required values. Losses due to

reflection and series resistance have been neglected as well as the effects of a

built-in drift field which should compensate somewhat for these losses. Ex-

pected reduction in the computed values for the various cell parameters should

not exceed 10% due to these factors. The above relations are for a P on N cell

polarity which were modified in the appropriate manner to consider also the

N on P cell polarity.

The computer program inputs required for the various constants

and material parameters were taken from the literature. Figure 1 contains

the absorption coefficient of GaAs versus wavelength( 5 ' 6) used together with
(7)the solar-irradiance data of Johnson in performing the integration to obtain

(JSC). Integrating the total number of photons available for electron-hole pair

6
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production between 3000 and 9000 A yields a value of 2.5 x 1017 photons cm-2

Considering the relation between absorption coefficient and the distance from

the surface where radiation is absorbed d a cm, this curve shows that

photons which contribute to power generation in GaAs are absorbed within 5 jim

of the surface. Figures 2 and 3 contain curves for minority carrier lifetime

and diffusion length for electrons and holes respectively as functions of majority

carrier concentration. The curves in Figure 3 were taken from reference (8).

Similar curves for electrons were derived from bulk mobility data of Sze and

Irvin (9 ) assuming the values apply to minority carriers moving in a region of

opposite type with the same concentration of electrically active impurities. In

addition, the lifetime was assumed constant for 1016 <NA < 1019 and varied for

NA > 1019 according to a constant lifetime - carrier concentration product,

TNA = 10 suggested by Moss.
( 4

)

Both lifetime and diffusion length were assumed constant throughout

the region of interest in the cell.

2.1 Computer Model Results

Computer calculations were made for both cell polarities to deter-

mine a cell design which would specify the material characteristics required for

maximum efficiency. The parameters varied included carrier concentration,

both in the surface and base regions, and therefore minority carrier lifetime

and diffusion length, and junction depth. A surface recombination velocity

value of 105 cm sec
-

1 was assigned for both cases, a value achieveable with a

practical cell process. Generally, the calculations were limited to a range of

values for the parameters varied which reflect the influence of practical con-

straints on material properties and/or process considerations.

2.1.1 P/N Cell Polarity

Figures 4 through 8 show computed values of efficiency (rl), short-

circuit current (JSC) and open-circuit voltage (Voc) for P/N cells as functions

of surface layer and base region carrier concentration for several values of

8
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junction depth. The family of curves in each figure represent the cell output for

a range of n-type base region carrier concentrations (1016 - 1018 cm- 3 ) plotted

against surface concentrations ranging between 1018 cm -
3 and 1020 cm 3 . The

curves show that efficiency increases with base doping due to higher open circuit

voltage and lower saturation current density (jo). The short circuit current

density is independent of base doping indicating a sufficiently large hole diffusion

length for high collection efficiency in the base region. A maximum cell output
19 -3

occurs with surface layer doping of approximately 10 cm , above this value

output rapidly falls off. As the figures show, this fall off in efficiency is due

chiefly to a reduced short circuit current density which in turn is a consequence

of smaller electron diffusion lengths. This trend is independent of junction

depth but is more pronounced as the junction depth increases.

To show more clearly the influence of junction depth on output

characteristics, Figures 9 and 10 contain curves showing cell output as a

function of junction depth for a range of surface and base region carrier con-

centrations, respectively. In Figure 9, the surface concentration was varied

between 1018 cm and 1020 cm for a base doping of 10 cm and junction

depths between 0.2 and 1.0 microns. Efficiency shows a small drop for surface

concentrations up to 2 x 1019 cm- 3 for these junction depths; above 2 x 1019
-3

cm the decrease in efficiency is accelerated becoming increasingly dependent

on junction depth. Examination of the open-circuit voltage (Voc) and short-

circuit current density (JSC) curves in the figure show the decrease in efficiency

is due to a reduction in (Voc) for the lighter surface doping which gradually

shifts to a dependence on (JSC) as the surface layer doping increases. In

Figure 10 for a surface layer concentration of 1019 cm
3 (which appears to be

near optimum) the cell output shows little dependence on junction depth for all

base region carrier concentrations considered. Again the fall off in efficiency

for junction depths approaching one micron is due to the decrease in (JSC).

These curves show the optimum junction depth to be ~0.4 micron; and for a

base doping of 1018 cm 3 a cell efficiency of 23.1% is calculated. It is signifi-

cant to note that nearly all the efficiency curves lie above 20% with only the

16
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smallest base concentration droping below this value as the junction depth in-

creases. This indicates that the principal consideration in fabricating a cell

incorporating these characteristics should be the transverse resistance of the

surface region for optimizing output.

2.1.2 N/P Cell Polarity

Figures 11 through 13 present similar calculated results for the

N/P cell polarity. The range in surface layer doping is not as large as the

P/N cell polarity due to the upper limit in n-type doping of approximately

5 x 1018, a characteristic of GaAs material. As the curves in Figure 3 indi-

cate, hole lifetime and diffusion length are significantly reduced in this con-

centration region making consideration of a cell with surface layer concentra-

tions greater than ~2 x 1018 impractical. In Figure 11, curves for the three

cell outputs (rk, VM, JSC ) are plotted against surface layer doping for a base

doping of 10 cm - and several values of junction depth. All curves exhibit

reduced values above surface layer concentrations of 1018 cm , a consequence

of reduced hole lifetime and diffusion length. This is consistent with the in-

crease in efficiency as the junction moves closer to the surface. The efficiency

curves are influenced for the most part by the behavior of (JSC). Figure 12

contains similar curves for base region doping of 10 7 cm 3 . The trends shown

by these curves are the same as the previous figure with a small improvement

in (ra) and (Voc) due to a lower saturation current density (jo). Figure 13 shows

the three cell parameters as a function of junction depth for surface layer

carrier concentration of 1018 cm 3 and several base concentrations. The short

circuit current density is quite sensitive to junction depth whereas open-circuit

voltage is more sensitive to base region doping. In fabricating an optimized

cell of this type a careful trade-off in junction depth versus transverse resistance

would be required.

2.1.3 Conclusions

From the results of the above calculations the following observations

are made:
19
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* For P/N cell polarity a near optimum structure consists of

surface layer doping of 1019 cm 
-

3 , base region doping of

1018 cm 3 , and junction depth 0.4 microns.

* Considerable latitude exists for adjusting dopant concentra-

tions and junction depth in fabrication of a P/N cell.

* For N/P cell polarity a near optimum structure consists of
18 -3

surface layer doping of 1018 cm , base region doping of

1017 cm 3 , and junction depth of 0.2 pm.

* Short-circuit current density for N/P cell is more sensitive

to junction depth than P/N cell.

* Open-circuit voltage is primarily sensitive to base con-

centration for both cell polarities.

* Both cell polarities show efficiency to be more dependent

on short-circuit current than on open-circuit voltage under

nearly all conditions.

* Encorporation of a drift field in the surface layer in both

cell polarities will improve cell output which can compensate

for losses due to resistance, reflection and junction effects

not explicitly considered in these calculations.

* Particular attention should be given to the factors affecting

minority carrier lifetime and diffusion length in the experi-

mental work and cell fabrication.

* The tolerances and requirements of a cell fabrication process

are more critical for the N/P cell than for the P/N cell.

23



SECTION 3

SOLAR CELL FABRICATION CONSIDERATIONS

The ion implantation technique for junction formation will be studied

under this program for solar cell fabrication. Zinc and selenium dopants have

been chosen to form the p- and n-type surface regions, respectively, using

commercially available GaAs material. The experimental areas of investigation

for determining the optimum parameters for the cell fabrication process include

the following:

(1) Surfa~ce and base region thickness, doping level and

doping profile which provide optimum efficiency;

(2) Influence of fabrication parameters on junction quality

(abruptness, reverse saturation current, A-factor) as

required for optimum efficiency;

(3) Material and contact requirements necessary to minimize

series resistance;

(4) Nature of material and process-induced defects (bulk,

junction and surface) responsible for limiting efficiency,

and practical means for minimizing recombination and

optimizing cell efficiency;

(5) Other physical parameters (e.g., minority carrier

diffusion lengths) necessary to analyze experimental

cell performance in terms of the analytical model

3.1 P/N Junction Formation

The major process considerations in constructing an ion implanted

GaAs solar cell are the range-energy relation for achieving the desired junction

depth, carrier concentration and distribution, and process induced defects affect-

ing surface layer and junction perfection. Junction depth can be determined from

range-energy calculations using the LSS theory. Calculated values for zinc in

24



GaAs are shown in Figure 14. The curve labeled Rp is the projected range or

the peak of the implanted dopant distribution which is gaussian according to

theory. The curve labeled xj, represents the junction depth for a ratio of peak

surface layer doping to base region doping of 100. The latter curve will vary

according to the formulas for gaussian distributions and will produce deeper

junctions for larger dopant ratios.( 0 ) Figure 15 shows the predicted distributions
19 -3

for three implantation energies. The peak concentration of 2 x 10 cm and

the implant energies were selected for illustration and represent the approxi-

mate region of interest in our experimental work. By inserting a base doping

concentration on the curves junction depths can be determined at the intersection

with the implanted distribution. Similar curves for selenium can also be con-

structed; which because of its similarity to zinc in atomic number and mass

will not differ greatly from the curves for zinc.

The peak impurity concentration is related to the implanted dose by

the relation

^A 0.4 No
N -

AR
p

where: N = peak concentration

No = ion dose

A Rp = standard deviation in projected range

In the present work since A R ranges between .05 - .1 Jim and N approximately

2 x 1019 cm , zinc doses of approximately 1015 cm will be required. A

selenium dose of approximately 5 x 1014 cm-2 would be required to produce an

n-type layer of ~ 2 x 1018 cm 3 .

Additional considerations for experimental investigation in-

clude post-implantation annealing to remove radiation damage effects and

produce the desired p+ or n+ surface layer. Previous experience indicates
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that anneal temperatures between 600 ° - 900 °C should be the region of concentra-
tion. The theoretical predictions assume gaussian distributions and 100% dopant
utilization which must also be verified.
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SECTION 4

FUTURE WORK

The next report period will be concerned with experimental investi-

gation of the optimum implantation and cell process parameters required to

achieve the cell structure suggested by the analytical results. This will in-

volve investigation of range-energy, surface preparation and contact metallurgy

and characterization of implanted surface layer and junction behavior.
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